Time-dependent density functional study of the electronic potential energy curves and excitation spectrum of the oxygen molecule.
نویسندگان
چکیده
Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O(2) are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-epsilon(HOMO)) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B(88X)+P(86C)), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0 to 1.8 A are divided into three groups according to the electron configurations. The 1pi(u) (4)1pi(g) (2) electron configuration gives rise to the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states; the 1pi(u) (3)1pi(g) (3) electron configuration gives rise to the c (1)Sigma(u) (-), C (3)Delta(u), and A (3)Sigma(u) (+) states; and the B (3)Sigma(u) (-), A (1)Delta(u), and f (1)Sigma(u) (+) states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B(88X)+P(86C) functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72 eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42 eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength greater than 0.1) in the energy interval of 0-20 eV, which is assigned to a X (3)Sigma(g) (-) to (3)Sigma(u) (-) transition. Furthermore, the oxygen molecule has a rich spectrum in the energy range of 14-20 eV and no spin allowed absorption bands are predicted to be observed in the range of 0-6 eV.
منابع مشابه
Electronic Spectral Line Shape of a Diatomic Molecule
The electronic absorption spectral line shape of a diatomic molecule with harmonic potential curves is calculated using the time correlation function formalism. Both the equilibrium shift and the frequency shift of the two linking electronic states ate taken into account. The spectrum is also calculated using the cumulated expansion which is related to the correlation function of the time-d...
متن کاملAbsorption of DCM Dye in Ethanol: Experimental and Time Dependent Density Functional Study
Experimental and theoretical absorption spectra of [2-[2-[4-(dimethylamino) phenyl]ethenyl]-6-methyl-4H- pyran-4-ylidene]-propanedinitrile (DCM) have been studied. UV-Visible (UV-Vis.) absorption spectrum of DCM has been reported after its synthesis. Two relatively intense peaks appeared at 473 and 362 nm respectively. A theoretical investigation on the electronic structure of DCM is presented ...
متن کاملStructural Characteristics and Reactivity Relationship of some Thiophene Derivatives
ABSTRACT The application of many hetero-aromatic compounds in pharmaceutical and dye industries make the theoretical study of their dipole moment (µ) oscillator strength (f) and other photo-physical properties worthwhile. These properties determine the solubility of many compounds; predict the relationship between their structures, properties and performance. The f, µ, α, transition dipole mome...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 4 شماره
صفحات -
تاریخ انتشار 2006